Link to USGS home page
Sound Waves Monthly Newsletter - Coastal Science and Research News from Across the USGS
Home || Sections: Spotlight on Sandy | Fieldwork | Research | Outreach | Meetings | Awards | Staff & Center News | Publications || Archives

 
Research

Abalones May Owe Their Huge Size to Sea Otters


in this issue:
 previous story | next story

tropical abalone and red abalone shells
Above: A 40-mm (1.5 in.) tropical abalone, Haliotis glabra, is dwarfed inside the shell of the world's biggest, the cold-water Pacific species Haliotis rufescens, the prized red abalone. Photograph by David Lindberg. [larger version]

Sea otter.
Above: Sea otters prey on herbivores that live off the drifting, dead kelp abundant along the Pacific coast. Photograph by Chris Brown, USGS. [larger version]

Abalone divers, who typically despise the California sea otter because of its voracious appetite for the largest and tastiest of the shellfish, may actually have sea otters to thank for the dinner-plate size of the prized delicacy.

Worldwide, abalones tend to be small, in the range of 2 to 4 inches across. Along the California and Pacific Northwest coast, however, abalones have grown much bigger, culminating in the 12-inch-diameter red abalone, Haliotis rufescens, avidly sought by divers and once the center of a thriving commercial fishery.

A surge in the 20th century in the sea-otter population killed off the commercial abalone industry along the central and southern California coast and made it hard for sport divers to find any abalones, let alone large, 12-inch ones. Many divers, fishermen, and even wildlife biologists worry that the sea otter is driving the abalone to extinction.

A new study of the interaction between abalones and California's coastal kelp forests, however, suggests that the sea otter played a key role in driving up the size of the abalones. Unlike kelp and algae in tropical waters, kelp in cold waters, like those along the California coast, have not developed toxic chemicals to ward off voracious grazers, such as sea urchins and snails. As a result, abalones, which live off the drifting, dead kelp so abundant along the Pacific coast, thrive and grow huge on the highly nutritious food.

The researchers speculate that the sea otter helped set up this state of affairs. By ruthlessly preying on sea urchins and smaller snails, otters kept the herbivores at bay, and the kelp had no need to develop chemical deterrents. Abalones could, for the most part, hide from otters in rock crevices while gorging like couch potatoes on the tasty kelp washed up on their doorstep.

Research ecologist James A. Estes, a U.S. Geological Survey (USGS) scientist and adjunct professor at the University of California, Santa Cruz; evolutionary biologist David Lindberg, professor and chair of integrative biology at the University of California, Berkeley; and molecular geneticist Charlie Wray, Associate Administrative Director of the Mount Desert Island Biological Laboratory in Salisbury Cove, Maine, have published the results of their study in the journal Paleobiology (v. 31, no. 4, p. 591-606; to view the abstract online, go to URL http://www.paleosoc.org/paleobio.htm, click "OnLine Access," and navigate to volume 31).

Jim Estes David Lindberg Charlie Wray
Above: Jim Estes (left), David Lindberg (center), and Charlie Wray (right).

"We realized with this study that most abalones are small, averaging 2 inches across, and live on coral reefs in the tropical Indopacific," Lindberg said. "So why does the world's largest abalone live in the same place as this major predator, the sea otter? We think the abundance of kelp, the ability of abalones to stay hidden in crevices, and the predation of otters set up an ideal system to ratchet up the size of abalones."

"There is very little doubt that in the old days, before people were part of the system and when otters were abundant along this coast, anywhere abalones occurred, the otters had a very limiting effect on their distribution and abundance," said Estes. "I think what was really going on was a dynamic equilibrium, where the populations in the crevices built up and the abalone would be pushed out to the point where otters could get them on the edges of the crevice. There were still lots of them there, but there was still a fair production that was being exploited by sea otters as well."

Lindberg has always been puzzled by claims that the sea otters are driving the abalones to extinction, since it is known that sea otters and abalones have shared coastal waters for the past 5 million years. The newcomers to the area, he said, are humans. Middens or refuse piles along the coast show that, historically, the California Indians also loved abalone and were the first to deplete the abalone population along segments of the coast.

"Since we can demonstrate that the large size increase took place in the presence of otters, the only hypothesis left as to the cause of the demise of a lot of abalone stock is human overfishing and probably destruction by humans of habitat," Lindberg said. "Getting an evolutionary grasp on a system gives us power in understanding its ecology and physiology, even if you are talking about management of wildlife stocks."

Colleagues for more than 20 years, Lindberg and Estes had often talked about the interactions along the coast between sea otters, abalones, and the abalone's principal food, kelp. Lindberg, a malacologist and former director of UC Berkeley's Museum of Paleontology, specializes in the evolution of mollusks. Estes, who has studied otters for some 35 years, has had a long-standing interest in the history of the kelp forests off the California coast. The two teamed up with Wray, a molecular geneticist, to look at the evolution of abalone size and how abalones may have affected the evolution of kelp.

Estes earlier had suggested that, as the Earth began to cool 45 million years ago, kelp moved out of their tropical homes into cooler waters in temperate regions of the Northern and Southern Hemispheres. The first radiation was into southern oceans 42 million years ago, as the Antarctic ice sheet developed, followed much later, possibly 10 million years ago, by radiation into the northern oceans as the Arctic froze over.

The current study, in which Wray used DNA comparisons to determine the family tree of abalones, supports these dates. Abalones, which originated about the time the dinosaurs died out 65 million years ago, moved into temperate areas around the same time as the kelp. Possibly because the kelp left behind many of the grazers that keep tropical kelp and macroalgae down, the temperate, cold-water kelp never developed the toxic chemicals that are typical of tropical kelp, and so abalones were able to grow large on the abundant food.

"In tropical systems, abalones are little-bitty things. But wherever one looks around the world where there are kelp-forest systems in cold oceans, that's where the bigger abalones occur," said Estes. "One of our major conclusions is that this has happened relatively recently in evolutionary time, starting around 5 million years ago."

Of eight abalone species now living along the Pacific coast from Baja California to British Columbia, six—the red, black, pink, white, green, and flat—are all 7 inches across or larger. Several species off the Japanese coast and in Antarctic waters also are significantly bigger than tropical species, which have remained small.

Interestingly, tropical kelp and algae have developed such toxic tissues that abalones no longer feed on them but, instead, have turned nocturnal and feed on blue-green algae and diatoms that form a scum on reef surfaces. Over time, kelp from the north has even returned to southern waters, yet abalones still avoid it as if it contained the same toxins as the original tropical kelp.

To both Lindberg and Estes, the California sea otter stood out as an intriguing member of the kelp/abalone community. Fossil evidence shows that otters have long lived along the coast and eaten the biggest and best of the abalone. Otters today take stones and pound on the underwater abalones until the shell margins break, then pry the abalones off the rocks with their paws, or they break the shells with a rock and come back later to peel the weakened abalones off the rocks. Although, in some situations, predators can drive prey to become larger to better fight off attacks, in the case of abalones, getting bigger just made them more attractive as a food source.

"If size is not a refuge, why would you get big, especially where you have a convenient predator taking you out at the same time?" Lindberg asked.

Hence the researchers' speculation that abalones grew large, in part, because of sea otters. The system lost its balance in the 1700s, when Russians first began slaughtering otters and fur seals for their pelts. By the time sea-otter and seal harvesting was outlawed in the early 1900s, the sea otter was thought to be extinct. Abalone populations rose, and abalones moved into more open spots, even developing a more peaked shell, since they no longer needed a slim shell to hide in crevices.

"We got a taste for abalone in the absence of otters, and now that the otter has come back, we're blaming the otter as a threat to the abalone," Lindberg said.

A remnant population of otters off Big Sur eventually grew to populate the entire central California coast, although it has yet to move south in numbers to the Channel Islands, or north beyond San Francisco. Divers fear that the California abalone sport fishery is doomed if otters do move toward the Mendocino coast.

"If otters spread into northern California, which is entirely a sport fishery now, a recreational fishery, a free diving activity—you can't exploit them using scuba, just breath-hold free diving—it will be pretty much over," Estes said.

The good news is that sharks may be keeping sea otters from spreading that far north, Estes said. He noted, too, that killer whales seem to have decimated sea-otter populations along Alaska's Aleutian Island chain.

Lindberg said that the abalone/sea-otter conflict is one of several unforeseen consequences of the Marine Mammal Protection Act, which was signed in 1972 and has led to a rapid rise in sea-mammal populations off the California coast. Seabird-nesting areas are being impacted by a burgeoning sea-elephant population, while sharks drawn by the mammals increasingly are attacking humans.

"We make management decisions all the time without an evolutionary perspective on how the system assembled over time," Lindberg said. "An evolutionary perspective is critical for understanding ecological context."

This work was funded in part by the National Science Foundation and the USGS.

About the author: Article author Robert Sanders holds degrees from Cornell University (B.S., engineering physics) and UC Berkeley (M.S., physics), attended the UC Berkeley School of Journalism, and has worked as a science writer at both UC Berkeley and UC San Francisco.


Related Sound Waves Stories
California Sea Otters—2005 Survey Numbers Dip, But Overall Population Trend Remains Positive
August 2005
California Sea Otter Numbers Are Up for the 2003 Census
July 2002
On the Road to Recovery—the Endangered White Abalone (Haliotis sorenseni) off Southern California
September 2002

Related Web Sites
The Tale of the Otter and the Abalone
University of California, Berkeley

in this issue:
 previous story | next story

 

Mailing List:


print this issue print this issue

in this issue: Fieldwork
cover story:
Monitoring Hurricane Wilma's Storm Surge

Research Study Suggests Abalones Owe Their Huge Size to Sea Otters

Outreach Hurricane Exhibit Highlights USGS Science

Staff Terry Edgar Retires

Gene Shinn Retires

Taiwanese Scientists Visit the WCMG Team

Andrew Stevens Joins WCMG Team

Publications New Book on Ecological Consequences of Artificial Night Lighting

February 2006 Publications List


FirstGov.gov U. S. Department of the Interior | U.S. Geological Survey
Sound Waves Monthly Newsletter

email Feedback | USGS privacy statement | Disclaimer | Accessibility

This page is http://soundwaves.usgs.gov/2006/02/research.html
Updated May 06, 2014 @ 02:12 PM (JSS)